

TPAC (Thai Pharmacist Practitioner Group in Asthma and COPD) Association of Hospital Pharmacy (Thailand)

"Novel Pharmacotherapy in Asthma and COPD"

Suthan Chanthawong

B. Pharm, Grad Dip in Pharmacotherapy Specialized Residency in Internal Medicine Faculty of Pharmaceutical Sciences, Khon Kaen University

Scope of Presentation

• INDACATEROL: COPD

• ROFLUMILAST: COPD



TPAC (Thai Pharmacist Practitioner Group in Asthma and COPD) Association of Hospital Pharmacy (Thailand)

"Ultra-LABAs: Indacaterol"

Suthan Chanthawong

B. Pharm, Grad Dip in Pharmacotherapy Specialized Residency in Internal Medicine

Faculty of Pharmaceutical Sciences, Khon Kaen University

Indacatero

Powder capsule administered by a
 Breezhaler (Onbrez[®]) or
 Neohaler (Acapta[®])

Mechanism of Action
 § Ultra Long-acting beta-2 agonist (LABA)

Clinical Application

• Indications:

§ The long-term maintenance treatment of airflow obstruction in patients with COPD

• Place in therapy:

§ Once daily alternative to salmeterol (bid), formoterol (bid), or tiotropium (od) in the treatment of *moderate to severe COPD*

Clinical Application

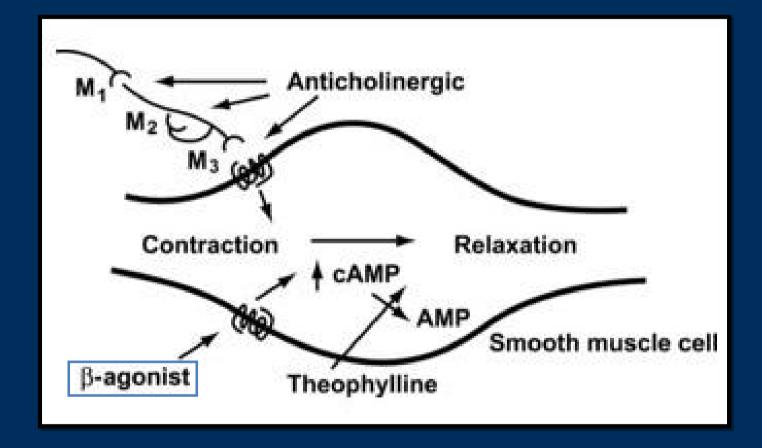
• Contraindications:

§ Asthma (without use of a long-term asthma control medication)

• Warnings/Precautions:

- **§** Asthma-related death
- **§** Acutely deteriorating COPD
- **§** Relief of acute symptoms
- **§** Excessive use (CV effects)
- **§** Paradoxical bronchospasm

Clinical Application


- Pregnancy:
 § Category C
- Lactation:
 - § Use with caution
 - **§** Unknown if excreted in breast milk

Drug Facts

• Pharmacology:

- **§** Long-acting beta₂-adrenergic agonist
- § Inhalation powder acts locally in lungs as bronchodilator
- **§** Stimulates intracellular adenyl cyclase to catalyze the conversion of ATP to cAMP
- § Increased cAMP causes bronchial smooth muscle relaxation

B₂ agonist: Mechanism of Action

Pharmacokinetics

Parameter	Information
Absorption	Bioavailability ~45%;
	T _{max} ~15 min
Distribution	Vd ~2,500 L;
	~95% protein-bound
Metabolism	Hydroxylation by CYP3A4 (Major)
Elimination	Feces (54% unchanged, 23% hydroxylated metabolite) Urine (< 2% unchanged) T _{1/2} ~40-56 hours

Drug Interactions

• Drug Interactions – Object Drugs:

§ No known significant interactions at the systemic exposure levels achieved in clinical practice.

Drug Interactions

• Drug Interactions – Precipitant Drugs:

- **§** Adrenergic drugs (↑ sympathetic effects)
- S Xanthine derivatives, steroids, or diuretics (^ hypokalemic effects)
- § MAOIs, TCAs, QTc prolonging drugs (↑ cardiovascular effects)
- § Beta blockers (↓ bronchodilation, ↑ risk of severe bronchospasm)

Adverse Effects

	Indacaterol (499)	Placebo (445)			
	N (%)	N (%)			
Respiratory, thoracic and mediastinal disorders					
Cough	29 (6.5)	20 (4.5)			
Oropharyngeal pain	10 (2.2)	3 (0.7)			
Infections					
Nasopharyngitis	24 (5.3)	12 (2.7)			
Nervous system disorders					
Headache	23 (5.1)	11 (2.5)			
Gastrointestinal disorders					
Nausea	11 (2.4)	4 (0.9)			

Monitoring Parameters

• Efficacy Monitoring:

- § FEV₁
- § PaO₂
- **§** Symptomatic improvement
 - **§** Cough, sputum production, exercise tolerance, use of rescue inhaler, etc.
- Toxicity Monitoring:
 § BP, HR, K⁺

Prescription Information

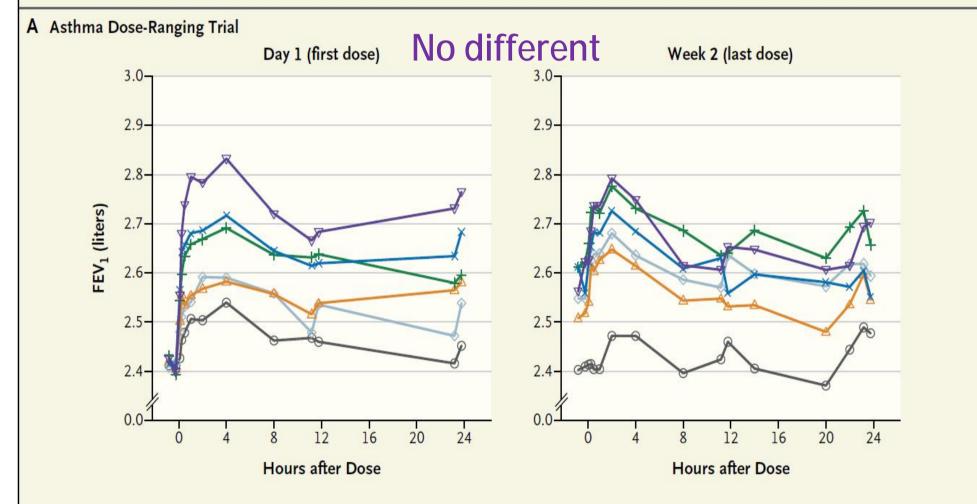
• Dosing / Cost:

- § 75 mcg once daily (USFDA 2011)
- § 150-300 mcg once daily (EMEA 2009)
- § Geriatric dosing: no
- **§** Renal dosing: no
- **§** Hepatic dosing: no
- § Dry powder capsule for inhalation with use of Neohaler[™] device only

- In an article in the December 15, NEJM 2011 regulators from:
 - FDA's Center for Drug Evaluation & Research (CDER),
 - Badhul Chowdhury (director of Division of Pulmonary, Allergy, and Rheumatology Products)
- <u>Detail</u> decision making process that led to approval of a single 75 µg dose of Novartis's Arcapta Neohaler indacaterol DPI for the treatment of COPD.

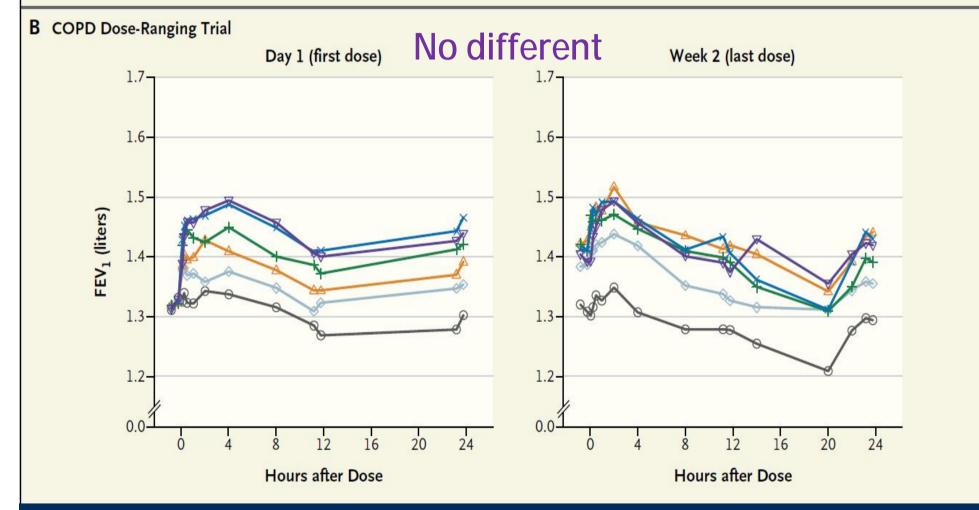
Chowdhury BA, et al. N Engl J Med 2011: 365;24

- "Since the European Medicines Agency (EMA) had approved indacaterol at doses of <u>150 μg</u> and 300 μg in 2009,"
- "One might question why the FDA selected a 75 μg dose."


Chowdhury BA, et al. N Engl J Med 2011: 365;24

- The rejection of the original NDA (submitted in 2009)
 - Resulted from safety concerns, including "a small numerical increase in serious asthma exacerbations and respiratory-related deaths" in asthma patients receiving doses of 300 µg and 600 µg in a dose ranging trial.

- At the same time: <u>no significant difference in</u> <u>efficacy between the 75 µg dose and higher</u> <u>doses</u>, suggesting that higher doses were Chowdhul MARCE SEARY J Med 2011: 365;24


Asthma and COPD Dose-Ranging Trials

 \Rightarrow Salmeterol, 50 μ g \Rightarrow Ind, 150 μ g \Rightarrow Ind, 75 μ g \Rightarrow Ind, 37.5 μ g \Rightarrow Ind, 18.75 μ g \Rightarrow Placebo

Chowdhury BA, et al. N Engl J Med 2011: 365;24

Asthma and COPD Dose-Ranging Trials

Chowdhury BA, et al. N Engl J Med 2011: 365;24

 With no data to show superiority of the 150 μg dose over the 75 μg dose

– "The FDA emphasized dose selection and safety to ensure that the marketed dose would provide maximal benefit without posing unnecessary safety risks."

Literature Review

• Safety:

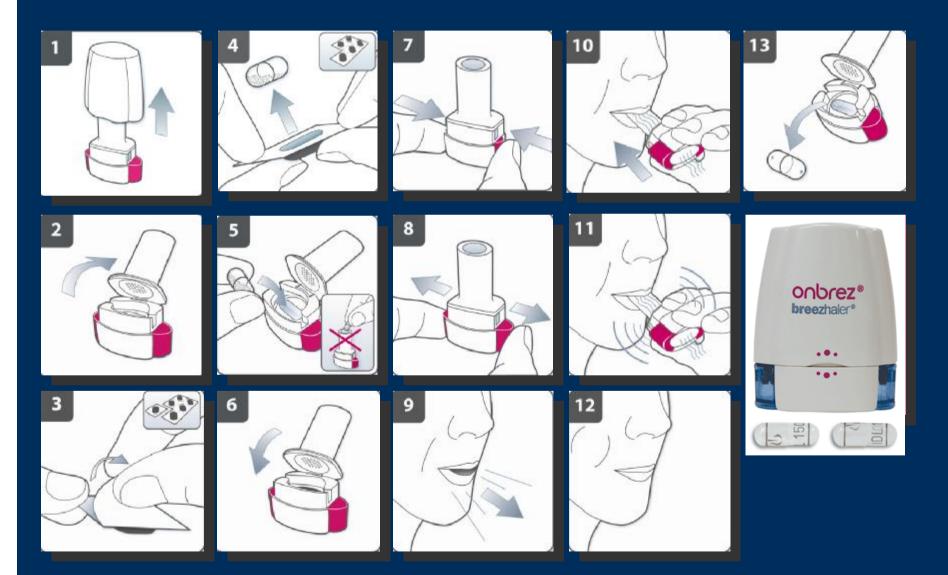
- **§** Slightly more AEs in the indacaterol group than in the placebo group (44.7% vs. 40.9%)
- § Frequency of cough was <u>3x higher</u> in indacaterol group (9.4% vs. 3.1%)
- **§** No significant difference in serious AEs

Literature Review

• Conclusion:

- § Indacaterol produced a superior response in trough FEV₁ when compared to placebo after 12 weeks
- § Indacaterol increased the percentage of days with no rescue use, but failed to improve Transitional Dyspnoea Index (TDI) focal scores and healthrelated QOL

GOLD 2011 Update Stable COPD: Pharmacologic Therapy


Group	1 st line	2 nd line	Alternative
A	SAAC prn or SABA prn	LAAC or LABA or SABA + SAAC	Theophylline
В	LAAC or LABA	LAAC + LABA	SABA and/or SAAC Theophylline
С	ICS + LABA or LAAC	LAAC + LABA	PDE4 SABA and/or SAAC Theophylline
D	ICS + LABA or LAAC		Carbocysteine SABA and/or SAAC Theophylline

Where does Indacaterol fit?

Alternative to salmeterol, formoterol, tiotropium
 § Once daily like tiotropium
 § Not in combination products
 § No data to reduce exacerbations like tiotropium

- Indacaterol in elderly patients
 - § Easy to use
 - § May increase adherence compared to salmeterol and formoterol

How to use breezhaler/neohaler


Summary

- Indacaterol, is a new once daily alternative for the maintenance treatment of moderate to severe COPD
- Indacaterol improves trough FEV₁ and reduces percentage of days requiring rescue use after 12 wks of tx with only a minimal increase in adverse effects (cough)
- Indacaterol is not indicated for the treatment of asthma, and like other LABAs, carries a BBW for asthma-related death
- More studies are needed to compare the efficacy of indacaterol to other currently available agents

TPAC (Thai Pharmacist Practitioner Group in Asthma and COPD) Association of Hospital Pharmacy (Thailand)

"PDE4 Inhibitors: Roflumilast"

Suthan Chanthawong

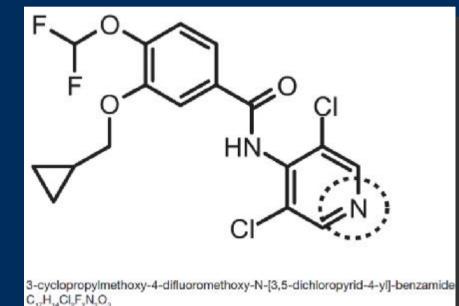
B. Pharm, Grad Dip in Pharmacotherapy Specialized Residency in Internal Medicine

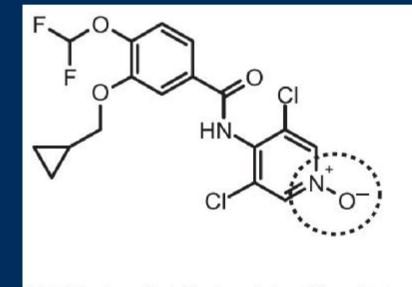
Faculty of Pharmaceutical Sciences, Khon Kaen University

Theopylline limitation

- Narrow therapeutic index
- Non selective blockade mechanisms
- Need TDM procedure
- Limitation on best characteristics

PDE enzyme function


PDE Family	Function(s)
PDE1	PDE1A probably serves to regulate vascular smooth muscle contraction and may play a role in sperm function; PDE1B is involved in dopaminergic signaling as well as immune cell activation and survival; PDE1C is required for vascular smooth muscle cell proliferation and may also regulate sperm function and neuronal signaling
PDE2	PDE2 frequently mediates cross-talk between cGMP and cAMP pathways; it regulates aldosterone secretion from the adrenal gland, cAMP and PKA phosphorylation of Ca ⁺² channels in the heart, cGMP in neurons, long-term memory, and barrier function of endothelial cells under inflammatory conditions
PDE3	PDE3A regulates cardiac contractility, platelet aggregation, vascular smooth muscle contraction, <u>oocvte maturation</u> , and regulation of renin release; PDE3B mediates insulin signaling, especially its antilipolytic effects; PDE3B also regulates cell cycle/proliferation and mediates the inhibitory effects of leptin and other signals on insulin secretion and renin release
PDE4	At least one form is expressed in most cells, and PDE4s play roles in a wide array of processes, including brain function, monocyte and macrophage activation, neutrophil infiltration, vascular smooth muscle proliferation, fertility, vasodilation, and cardiac contractility
PDE5	PDE5 is a well-documented regulator of vascular smooth muscle contraction, especially in penis and lung; it is involved in NO-cGMP signaling in platelets to control aggregation and may also play a role in regulation of cGMP signaling in the brain
PDE6	PDE6 is involved in signal transduction of the photoresponse in the eye; it may also regulate melatonin release from the pineal gland
PDE7	PDE7 is implicated to play a role in T-cell activation and activation of other inflammatory cells
PDE8	PDE8 may play a role in T cell activation, sperm, or levdig cell function
PDE9	The function of PDE9 is currently unknown, but it has been postulated to regulate NO-cGMP signaling in the brain
PDE10	PDE10A is thought to be a regulator of cGMP in the brain and may play a role in learning and memory
PDE11	PDE11 possibly has a role in sperm development and function


Bender AT, Beavo JA. Pharmacol Rev 58:488–520, 2006

 FDA-approved (February 28, 2011) to <u>reduce</u> <u>the risk of COPD exacerbations</u> in patients with <u>severe COPD associated with chronic</u> <u>bronchitis and a history of exacerbations</u>

- Manufacturer
 - Forest Pharmaceuticals

Chemical structure of roflumilast and roflumilast N-oxide

N-(3,5-dichloro-1-oxypyridin-4-yl)-3-cyclopropylmethoxy-4-difluoromethoxybenzamide

Roflumilast

Roflumilast N-oxide

Dosage and Administration
 § 500 mcg tablet daily
 § With or without food

Contraindications
 § Moderate to severe liver impairment
 § Child-Pugh B/C

- Warnings and Precautions

 § Psychiatric events (insomnia, depression, anxiety)
 § 3 suicide events in roflumilast vs. 1 suicide event with placebo
 § Weight loss (5-10% of body weight)
 - **§** 20% vs. 7%

Metabolism

§ CYP 3A4 and CYP1A2

§ To the active metabolite roflumilast N-oxide

§ Active metabolite contributes 90% to PDE-4 inhibition

 Drug interactions **§** Inducers reduce exposure: CBZ, PHB, PHT **§** Inhibitors increase exposure: § Erythromycin, fluvoxamine **§** Should not be given with Theophylline **§** PK study showed no effect on theophylline **§** Methlyxanthines may also be non-selective PDE inhibitors

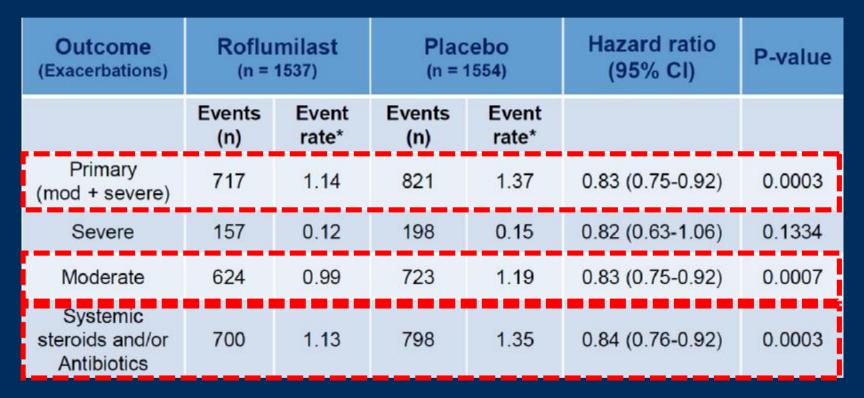
Roflumilast

Geriatric use

§ 4500 subjects exposed for up to 12 months
§ 2022 were > 65 years; 471 were > 75 years
§ No differences in safety/efficacy; no adjustment

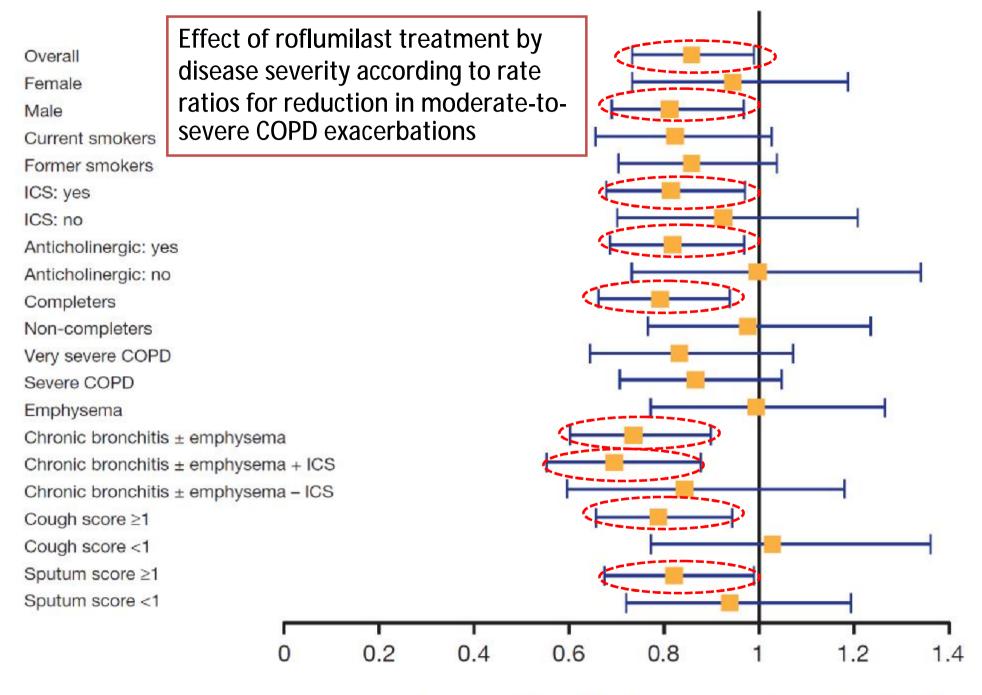
No dose adjustment in renal impairment
Cost: \$215 monthly

Roflumilast


- Adverse Effects
 - § Diarrhea, nausea, vomiting, weight loss, decreased appetite, abdominal pain, dyspepsia
 - § Headache, dizziness, insomnia, anxiety, depression
 - § Back pain, muscle spasm
 - § Tremor

Roflumilast

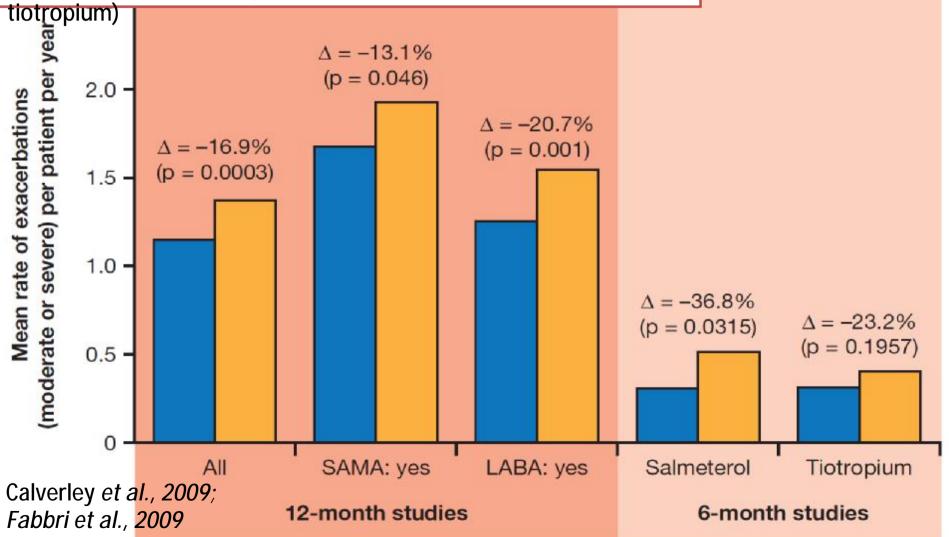
• Gold Guidelines 2011:


- "Roflumilast may be useful to reduce exacerbations in patients with FEV₁ < 50% predicted, chronic bronchitis, and frequent exacerbations"
- Recommended as 2nd and alternative choice in Stage C and Stage D patients (both high risk for exacerbation) combined with a long-acting bronchodilator
- There are no comparison or add-on studies of roflumilast and inhaled corticosteroids

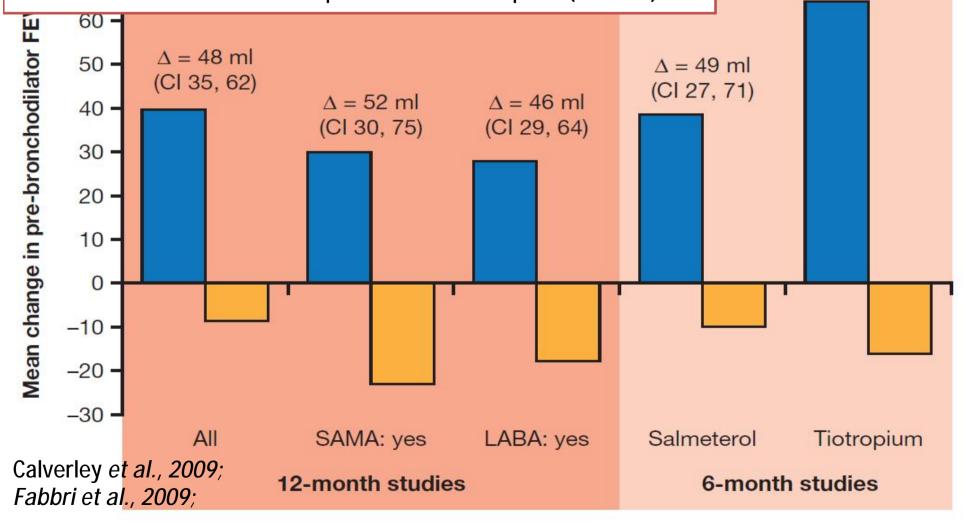
Roflumilast: Clinical data

- Absolute risk reduction (ARR):
 - Risk pla Risk Roflu = 821/1554 717/1537 = 0.528 0.466 = 6.2%
- Number needed to treat = 1 / ARR = 1 / 0.062 = 16
- * Mean rate, per patient per year

Lancet. 2009; 374: 685-94


Rennard et al.,2011

Favours roflumilast


Favours placebo

Effects on moderate or severe exacerbations after treatment with roflumilast 500 mg or placebo in patients receiving concomitant short-acting muscarinic antagonists (SAMAs) or long-acting beta2-adrenergic receptor agonists (LABAs) in studies M2-124 and M2-125 (12-month studies) and M2-127 (concomitant administration with salmeterol) and M2-128 (concomitant administration with

Roflumilast 500 µg Placebo

Effects on pre-bronchodilator FEV1 after treatment with roflumilast Roflumilast 500 µg 500 mg or placebo in patients receiving concomitant short-acting Placebo muscarinic antagonists (SAMAs) or long-acting beta2-adrenergic All p < 0.0001receptor agonists (LABAs) in studies M2-124 and M2-125 (12-month studies) and in patients randomized to concomitant administration of roflumilast or placebo with salmeterol (M2-127) or concomitant administration of roflumilast or placebo with tiotropium (M2-128)

 $\Lambda = 80 \text{ ml}$

(CI 51, 110)

GOLD 2011 Update Stable COPD: Pharmacologic Therapy

Group	1 st line	2 nd line	Alternative
A	SAAC prn or SABA prn	LAAC or LABA or SABA + SAAC	Theophylline
В	LAAC or LABA	LAAC + LABA	SABA and/or SAAC Theophylline
С	ICS + LABA or LAAC	LAAC + LABA	PDE4 SABA and/or SAAC Theophylline
D	ICS + LABA or LAAC		Carbocysteine SABA and/or SAAC Theophylline

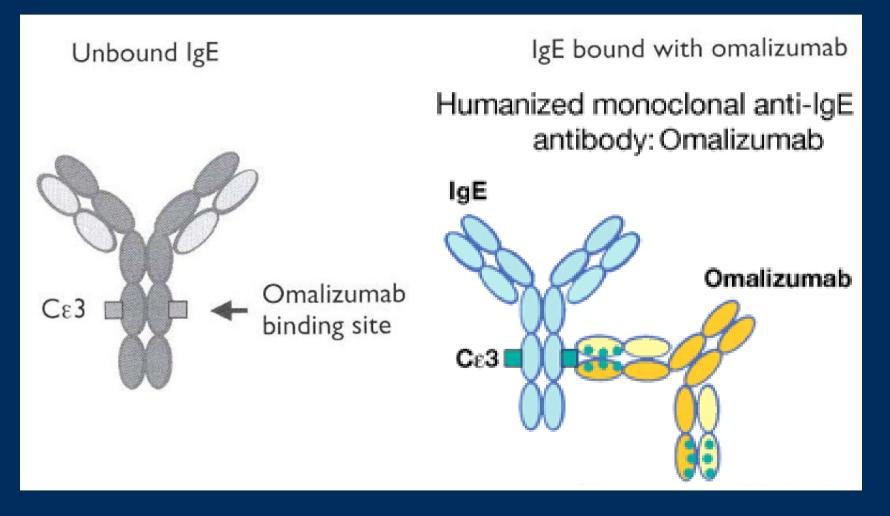
True or False?

Summary PDE4 inhibitor: anti-inflammatory effects Increases FEV₁ and FVC Reduces exacerbations requiring steroids in patients with severe COPD No change in QOL or mortality Side effects mainly GI (N/V/D) and weight loss

TPAC (Thai Pharmacist Practitioner Group in Asthma and COPD) Association of Hospital Pharmacy (Thailand)

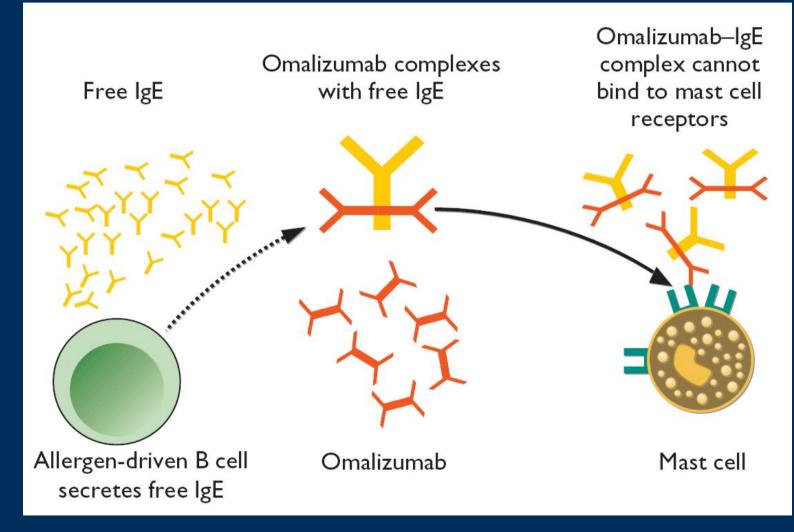
"Anti-IgE: Omalizumab"

Suthan Chanthawong

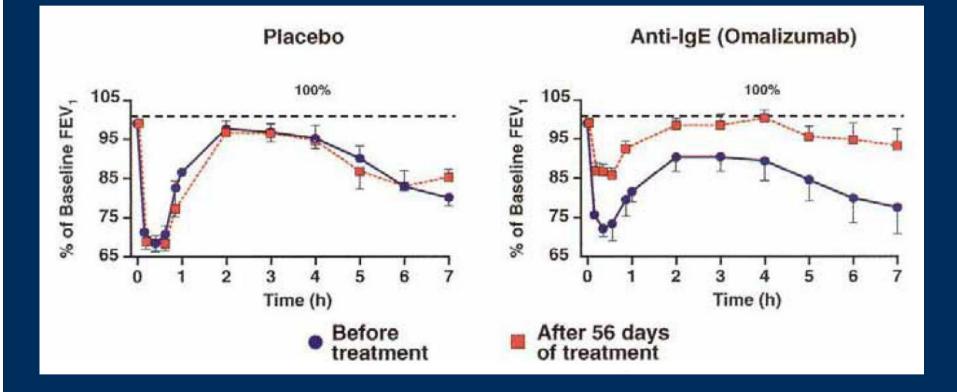

B. Pharm, Grad Dip in Pharmacotherapy Specialized Residency in Internal Medicine

Faculty of Pharmaceutical Sciences, Khon Kaen University

IgE Blocker Therapy Omalizumab (XolairTM)


- Approved June 20, 2003
- Humanized mAb against IgE (95% human)
- Binds circulating IgE regardless of specificity
- Forms biologically inert omalizumab-lgE complexes
- 150 to 375 mg, s.c., q. 2 or 4 weeks

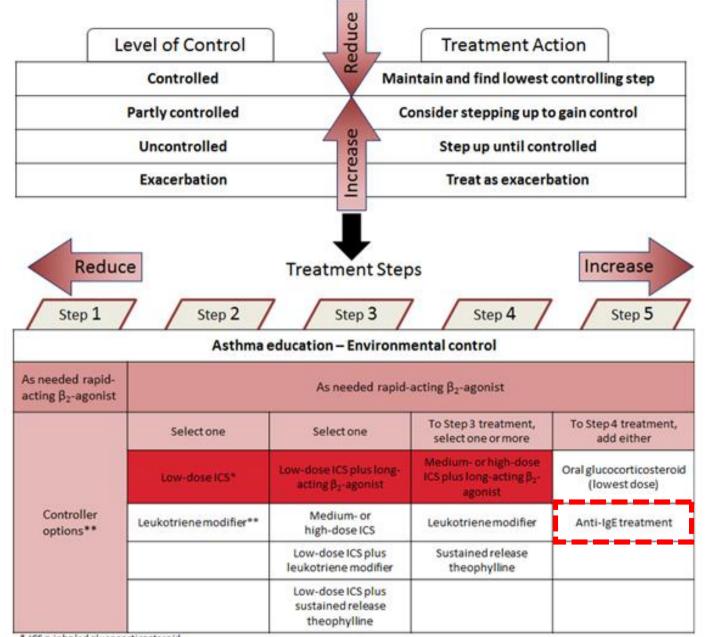
BINDING OF OMALIZUMAB TO IgE


(Based on Rosenwasser & Nash, Pharmacy & Therapeutics 2003;28:400-10.)

BINDING OF OMALIZUMAB TO IgE

(Based on Rosenwasser & Nash, Pharmacy & Therapeutics 2003;28:400-10.)

Effect of Allergen Challenge on FEV₁


Boushey HA Jr. J Allergy Clin Immunol 2001;108:S77-S83

Who fit to omalizumab therapy?

Omalizumab

- Moderate to severe persistent asthma (step 5)
- 12 years, or older
- IgE level 30-700 IU/ml
- Positive skin test, or in vitro reactivity perennial aero-allergen
- Inadequate control with inhaled CS

* ICS = inhaled glucocorticosteroid

** Receptor antagonist or synthesis inhibitors

** Preferred controller options in shaded boxes

Alternative reliever treatments include inholed anticholinergics, short-acting oral β_2 -agonists, some long-acting β_2 -agonists, and short-acting theophylline. Regular dosing with short and long-acting β_2 -agonists is not advised unless accompanied by regular use of an inhaled glucocorticosteroid.

Omalizumab: ADVERSE REACTIONS

MOST COMMON ADVERSE REACTIONS

- Injection site reaction (45%) bruising, erythema
- Viral infections (23%)
- URI (20%)
- Sinusitis (16%)
- Headache (15%)
- Pharyngitis (11%)
- MOST SERIOUS
 - malignancy (0.5%)
 - anaphylaxis (rare)

Omalizumab dosing

		Total dose (mg) per 28 days									
Baseline	Body weight (kg)										
IgE (IU/mL)	>20-25	>25-30	>30–40	>40–50	>50-60	>60-70	>70-80	>80-90	>90–125	>125-15	0
≥30–100	75	75	75	150	150	150	150	150	300	300	Q4 wks
>100–200	150	150	150	300	300	300	300	300	450	600	Q2
>200-300	150	150	225	300	300	450	450	450	600	750	wks
>300-400	225	225	300	450	450	450	600	600			
>400-500	225	300	450	450	600	600	750	750			
>500-600	300	300	450	600	600	750			Do not c	1050	
>600-700	300	450	450	600	750		_		Do not c	1030	

Omalizumab clinical study

Study	Number of patients	Treatment duration	Efficacy endpoint
INNOVATE study ¹	419	28 weeks	Asthma exacerbation rate
ETOPA study ²	312	52 weeks	Asthma exacerbation rate
SOLAR study ³	405	28 weeks	Asthma exacerbation incidence
Busse study ⁴	525	52 weeks	Asthma exacerbation rate
Solèr study⁵	546	52 weeks	Asthma exacerbation rate
Holgate study ⁶	341	32 weeks	Reduction in ICS use
ALTO safety study	1,899	24 weeks	Asthma exacerbation rate

93% of patients met GINA 2002 criteria for severe persistent asthma

1. Humbert M, et al. Allergy 2005; 2. Ayres JG, et al. Allergy 2004; 3. Vignola AM, et al. Allergy 2004, 4. Busse W, et al. J Allergy Clin Immunol 2001; 5. Soler M, et al. Eur Respir J 2001, 6. Holgate ST, et al. Clin Exp Allergy 2004

Omalizumab clinical study

	Annual exacerbation rate treatment difference	Percent reduction	p-value
INNOVATE study ¹	0.49	26.6%	0.039
ETOPA study ²	1.49	60.4%	<0.001
SOLAR study ³	0.29	37.5%	0.027
Busse study ⁴	0.40	40.3%	<0.001
Solèr study ⁵	0.70	57.6%	<0.001
Holgate study ⁶	0.42	26.5%	0.165
ALTO study	0.18	15.3%	0.077
Pooled ⁷	0.56	38.3%	<0.0001

1. Humbert M, et al. Allergy 2005; 2. Ayres JG, et al. Allergy 2004; 3. Vignola AM, et al. Allergy 2004, 4. Busse W, et al. J Allergy Clin Immunol 2001; 5. Soler M, et al. Eur Respir J 2001, 6. Holgate ST, et al. Clin Exp Allergy 2004; 7. Bousquet J, et al. Allergy 2005

Omalizumab clinical study

- Add-on therapy to improve asthma control in patients (≥6 years) with
 - severe persistent allergic asthma

nositivo skin tost or in_vitro reactivity to a neronnial

In EU, Omalizumab is indicated for severe persistent allergic (IgE-mediated) asthma

 – пипире обситенией severe astrina exactionations despite daily high-dose ICS, plus a LABA

- in patients \geq 12 years: reduced lung function (FEV₁ <80%)

• Omalizumab treatment should only be considered for patients with convincing IgE-mediated asthma

FEV1 = forced expiratory volume in 1 second ICS = inhaled corticosteroid; LABA = long-acting β 2-agonist

EU SmPC (omalizumab) 2009

Omalizumab EU label stipulates 16-week response assessment

- At 16 weeks after commencing omalizumab therapy patients should be assessed by their physician for treatment effectiveness before further injections are administered
- The decision to continue omalizumab should be based on whether or not a marked improvement in overall asthma control is seen

The safety of omalizumab

- Clinical trial safety database of >7,500 patients
 - >5,000 treated with omalizumab
 - majority with allergic asthma
- Frequencies of AEs were similar between omalizumab and control groups, even in severe patients
- No pattern or cluster of Aes
- Majority of AEs were mild-to-moderate and of short duration
- In studies where the local symptoms and signs of injection site reactions were evaluated prospectively after each dose, the overall frequency of injection site reactions was similar
 - omalizumab: 45%; placebo: 43%

Current omalizumab dosing table includes patients with total IgE ≤700 IU/mL* and body weight ≤150 kg

Baseline	Body weight (kg)										
IgE (IU/mL)	>2025	>25-30	>30-40	>40-50	>50-60	>60-70	>70-80	>80–90	>90–125>	>125-150	
≥30–100	75	75	75	150	150	150	150	150	300	300	
>100-200	150	150	150	300	300	300	300	300	225	300	
>200–300	150	150	225	300	300	225	225	225	300	375	
>300-400	225	225	300	225	225	225	300	300			
>400–500	225	300	225	225	300	300	375	375			
>500-600	300	300	225	300	300	375		DO NOT ADMINISTER			
>600–700	300	225	225	300	375	Data are	ata are unavailable for dose recommendation				
	Dose (mg) to be administered every 4 weeks									weeks	
	Dose (mg) to be administered every 2 weeks								weeks		
*Pretreatment								EU S	SmPC (oma	alizumab)	

Thank you for your attention

